The Saturn Energy Auditor Field Guide describes the procedures used to analyze the performance of existing homes.

- Energy Audits and Customer Relations
- Inspecting the Building Shell
- Diagnosing Shell Air Leakage
- Evaluating Heating and Cooling Systems
- Baseload Measures
- Windows, Doors, and Exterior Insulation
- Health and Safety
- Analyzing Mobile Homes
Saturn
Energy Auditor
Field Guide

Produced by John Krigger and Chris Dorsi
Illustrated by John Krigger, Bob Starkey,
Steve Hogan, and Mike Kindsfater
This edition compiled by Darrel Tenter

The Saturn Energy Auditor Field Guide
describes the procedures used to analyze the
performance of existing homes.

The companion volumes
Saturn HVAC Systems Field Guide and
Saturn Hydronic Systems Field Guide
include procedures for inspecting, servicing, and improving the
efficiency and safety of residential heating and cooling systems.

The companion volume Saturn Building Shell Field Guide
outlines procedures for improving the effectiveness of insulation,
doors, windows, and air-sealing details.

In compiling this publication, the authors have benefited from the experience of
many individuals who have reviewed our documents, related their experiences,
or published information from which we’ve gained insight. Though we can’t name
everyone to whom we’re indebted, we acknowledge the specific contributions of
the following people: Martha Benewicz, Michael Blasnik, Anthony Cox, Bob Davis,
Jim Davis, R.W. Davis, Rob de Kieffer, Rick Karg, Rudy Leatherman, Dave Like,
Bruce Manclark, David Miller, Rich Moore, Gary Nelson, Russ Rudy, Russ Shaber,
Cal Steiner, Ken Tohinaka, John Tooley, Bill Van Der Meer, and Doug Walter. We
take full responsibility, however, for the content and use of this publication.

Copyright 2009 by
Saturn Resource Management, Inc.
Bookstore: www.srmi.biz
Online Training: www.SaturnOnline.biz
Printed in the U.S.
ISBN 978-1-880120-17-0
Ver. 070109
Foreword

The Saturn Energy Auditor Field Guide outlines a set of best practices for home performance organizations. This guide looks at residential structures through the eyes of the auditor who focuses on energy auditing, sales, and quality control.

Chapter 1 describes a methodical audit procedure that helps assure consistent data collection. It includes simple recommendations the auditor can make to help improve the efficiency of their customer’s home right away.

Chapter 2 focuses on inspection of the home’s insulation and the associated parts of the building shell. It includes tips on assessing hidden areas.

Chapter 3 describes the diagnostic procedures used to evaluate air leakage through the building shell. These procedures help the auditor determine which air-sealing measures will be most beneficial.

Chapter 4 covers the analysis of heating and cooling systems. These procedures are used to specify maintenance, assess the cost effectiveness of system upgrades, and protect the health and safety of the occupants.

Chapter 5 describes the analysis of baseload consumption, including water heating, refrigeration, and lighting. These simple procedures often identify the best energy-saving procedures of all.

Chapter 6 identifies the best ways to improve doors and windows. Though the energy savings from window replacement are often minimal, these upgrades remain among the most popular home improvements.

Chapter 7 focuses on the well being of both auditors and customers. Health and safety remains paramount to our work in the building trades, and we hope you take to heart the advice contained here.

Chapter 8 includes inspection procedures for mobile homes. Some of these measures can pay off handsomely, especially for the owners of older homes.

The Saturn Field Guides have benefited greatly over the years from the generous feedback of our readers. Please help continue this process by sending us your comments and suggestions.

John Krigger
jkrigger@srmi.biz

Chris Dorsi
ccdorsi@srmi.biz
TABLE OF CONTENTS

1: Energy Audits and Customer Relations

- What is an Energy Audit? .. 15
- Purposes of an Energy Audit 15

The Energy Auditing Process 16
- Screening and Surveys 17
- Visual Inspection .. 18
- Diagnostic Testing ... 22
- Numerical Analysis .. 23

Understanding Energy Usage 24
- Baseload Versus Seasonal Use 24
- Energy Indexes .. 29
- Electricity Peak Load 31
- Carbon Footprint .. 32

The Work Scope and Contracts 33
- The Work Scope ... 33
- Contracts .. 34

Work Inspections ... 35
- In-Progress Inspections 35
- Final Inspections ... 35
- Quality Control Versus Quality Assurance 36
- Energy-Auditing Disclosure and Ethics 37

Customer Relations .. 37
- Communication Best Practices 38
- Customer Interview 39
- Sales Best Practices 40

Customer Education ... 40
- Reducing Heating Consumption 40
- Reducing Hot Water and Laundry Consumption 42
- Reducing Cooling Consumption 43
Table of Contents

2: Evaluating Insulation

- Infrared Scanning .. 48
- Evaluating Attic or Roof Insulation 48
 - Attic Ventilation .. 49
 - Attics in Story-and-a-Half Homes 50
 - Evaluating Closed Roof Cavities 53
- Walk-Up Stairways and Doors 54
 - Retractable Attic Stairways 55
- Evaluating Wall Insulation 55
- Thermal Boundary Decisions 57
 - Determining Floor or Foundation Insulation 59

3: Diagnosing Shell and Duct Air Leakage

- Air-Leakage Problems and Solutions 61
- Driving Forces for Air Leakage 61
- Safety Considerations for Air Sealing 63
- Goals of Air-Leakage Testing 63
- Air Sealing: Three Approaches 64
- Air-Leakage Testing ... 65
 - Blower-Door Testing 66
 - Preparing for a Blower Door Test 68
 - Blower Door Test Procedures 70
 - Approximate Leakage Area 72
- Evaluating Ventilation Level 73
- Discovering Air-Leakage Trouble Spots 73
Air-Barrier Zone Pressure Diagnosis 77
When to Use Zone Pressure Diagnostics 78
Benefits of Zone Pressure Diagnostics 78
Primary Versus Secondary Air Barriers 79
Simple Zone Pressure Tests 80
Using a Digital Manometer to Test Air Barriers 82
Add-a-Hole Zone-Leakage Measurement 85
Locating the Thermal Boundary 92

4: Evaluating Heating and Cooling Systems

Heating System Replacement 95
Combustion Furnace Replacement 96
Combustion Boiler Replacement 97
Gas-Fired Heating Installation 100
Oil-Fired Heating Installation 100
Gas Space-Heater Replacement 102
Space-Heater Operation ... 103
Un-vented Space Heaters .. 103
Testing Gas Furnaces and Boilers 103
Furnace Efficiency Testing 105
Critical Furnace-Testing Parameters 112
Measuring BTU Input on Natural Gas Appliances 113
Inspecting Gas Combustion Systems 116
Oil-Burner Safety and Efficiency Service 118
Oil-Burner Inspection .. 118
Oil-Burner Testing ... 119
Oil-Burner Adjustment .. 122
Oil-Burner Maintenance and Visual Checks 123
Wood Stoves .. 123
Wood Stove Clearances .. 123
Stove Clearances .. 124
Wood Stove Inspection .. 125
Draft, Venting, and Combustion Air 126
Essential Combustion Safety Tests 127
Leak-Testing Gas Piping 128
Carbon Monoxide (CO) Testing 128
Worst-Case Testing for Atmospheric Venting Systems 129
Worst-Case Depressurization, Spillage, and CO 130
Improving Inadequate Draft 133
Zone Isolation Testing for Atmospherically Vented Appli-
ances .. 135

Inspecting Venting Systems 136
Vent Connectors .. 136

Chimneys .. 139
 Masonry Chimneys ... 139
 Manufactured Chimneys 141
 Chimney Terminations 141
 Metal Liners for Masonry Chimneys 142

Special Venting Considerations for Gas 144
 Venting Fan-Assisted Furnaces and Boilers 144
 Combustion Air .. 146

Ducted Air Distribution 150
 Evaluating Forced-Air System Airflow 151
 Evaluating Furnace Performance 155
 Measuring Airflow .. 157
 Troubleshooting Airflow Problems 164
 Improving Duct Airflow 169

Evaluating Duct Air Leakage 171
 Troubleshooting Duct Leakage 172
 Measuring House Pressure Caused by Duct Leakage .. 176
 Duct Air-Tightness Standards 177
 Measuring Duct Air Leakage with a Duct Blower 178
 Typical Duct Leak Locations 181

Duct Insulation .. 185
Hot-Water Space-Heating Distribution 186
 Boiler Efficiency and Maintenance 186
 Distribution System Improvements 187
Steam Heating and Distribution .. 190
Steam System Maintenance ... 192
Steam System Energy Conservation 192
Programmable Thermostats ... 194
Electric Heat .. 194
Electric Baseboard Heat .. 195
Electric Furnaces ... 196
Electric Radiant Heat .. 197
Central Heat-Pump Energy Efficiency 197
Room Heat Pumps ... 199
Evaluating Central Air-Conditioning Systems 200
Central Air-Conditioner Inspection 201
Air-Conditioner Sizing ... 203
Duct Leakage and System Airflow 203
Air-Conditioner Charge Checking 204

5: Baseload Measures

Water-Heating Energy Savings 205
Determining the Water Heater’s Insulation Level 205
Water Heater Blankets .. 206
Measuring and Adjusting Hot Water Temperature 207
Water-Heater Pipe Insulation 208
Water-Saving Shower Heads .. 209
Water-Heater Replacement ... 210
Gas Storage Water Heaters ... 210
Water-Heater Replacement Decisions 212
Tankless Gas Water Heaters 213
Solar Hot-Water System Design 214
Refrigerator Evaluation ... 216
Refrigerator Metering Protocol 217
Lighting Improvements ... 220
6: Windows, Doors, and Exterior Insulation

Window Shading .. 223
 Exterior Window Shading Treatments 224
 Interior Window Shading Treatments 224
 Landscaping for Shade 225
Exterior Storm Windows 226
Double Windows ... 227
 Window and Door Repair 227
 Window Repair and Weatherstrip 228
 Door Repair and Weatherstrip 228
Window Replacement 231
 Replacement Window Specifications 232
 Window-Replacement Options 232
 Window Safety .. 235
Exterior Insulation, Siding, and Windows 237

7: Health and Safety

Pollutant Source Control 239
 Carbon Monoxide (CO) 240
 Gas Range and Oven Safety 241
 Smoke and Carbon Monoxide Alarms 242
 Moisture Problems 244
 Crawl Space Moisture Control 247
 Lead-Safe Weatherization 249
Electrical Safety ... 250
Evaluating Home Ventilation 251
 Control of Pollutants 252
 ASHRAE 62.2 – 2007 Ventilation Standard 255
Whole-House Ventilation Systems 257
8: Evaluating Mobile Homes

Mobile Home General Auditing Tasks 264
 Health and Safety .. 264
 Repair Work .. 265
Evaluating Mobile Home Insulation 266
 Evaluating Belly Insulation 267
 Evaluating Sidewall Insulation 269
Specifying Furnace Replacement 270
Evaluating Duct Air Leakage 270
 Belly Return Air Systems 272
 Belly Pressure Test ... 273
Evaluating Shell Air Leakage 274
 Air-Leakage Locations .. 274
Specifying Water-Heater Replacement 275
Evaluating Interior Storm Windows 276
 Considering Window Replacement 277
Door Replacement Specifications 278

Appendices

Required Diagnostic Equipment 279
R-values for Common Materials 280
Calculating Attic Insulation 281
Calculating Wall Insulation 285
Calculating Mobile Home Insulation 288
Refrigerator Dating Chart .. 290
Tables and Illustrations .. 291
Index ... 299
CHAPTER 1: ENERGY AUDITS AND CUSTOMER RELATIONS

This chapter outlines the services delivered during an energy audit. It also discusses ethics, customer relations, and customer education.

1.1 WHAT IS AN ENERGY AUDIT?

An energy audit is a package of services that delivers these benefits to customers.

Help customers make decisions about how to conserve energy and save money.

- Help customers increase the comfort, health, safety, and durability of their homes.
- Protect the environment by reducing waste and pollution.

1.1.1 Purposes of an Energy Audit

An energy audit includes some or all of the following tasks, depending on the level of the audit.

- Encourage behavioral changes that reduce energy waste.
- Inspect the building and its mechanical systems to gather the information necessary for decision-making.
- Evaluate the current energy consumption and current condition of the building.
✔ Diagnose areas of energy waste, health and safety, or durability problems related to energy conservation.

✔ Recommend energy conservation retrofits.

✔ Project savings expected from energy retrofits.

✔ Estimate labor and materials costs for energy retrofits.

✔ Note current and potential health and safety problems and how they may be affected by proposed changes.

✔ Educating the homeowner about energy usage and conservation options.

✔ Provide a written record of the energy audit and the recommendations offered.

Why We Care about Health, Safety, and Durability

The health and safety of customers must never be compromised by energy auditing or energy conservation measures. Harm caused by our efforts would hurt both our customers and our profession. Energy conservation work can alter the operation of heating and cooling systems, alter the moisture balance within the home, and reduce a home's natural ventilation rate. Energy auditors and technicians must take all possible precautions to avoid harm and instead deliver enhanced safety, indoor air quality, and home durability.

1.2 The Energy Auditing Process

Visual inspection, diagnostic testing, and numerical analysis are the three broad types of services that compose energy audits. Screening is also an important energy-audit function, which gathers preliminary information that helps to target further energy auditing. The number of energy-auditing services and their complexity depends on the customer's commitment, the auditor's capabilities, and the requirements of energy programs among other factors. Here, we classify energy audits as Levels 1,
2, and 3, although energy auditing is actually more of a continuum as shown in the chart here.

Energy Audits: The cost of an energy audit depends on the time it requires and the complexity of the services offered. The customer’s commitment to energy conservation and the energy auditor’s capabilities determine the level of the energy audit and which services are rendered as part of the audit.

The Level 1 energy audit can be as simple as a paper form or internet survey. Or it may be a limited home visit to collect information and perform simple customer education. Level 2 energy audit usually includes a blower door test and may include computer modeling. Level 3 audits focus on diagnosing specific serious problems and prescribing solutions. The training level of the auditor determines what level of audit he or she is qualified to perform.

1.2.1 Screening and Surveys

Many energy conservation programs include screening, which is a preliminary evaluation of customer needs that requires less effort than more comprehensive audits. Screening methods include the internet-based energy audits that are completed by customers and customer phone calls that are processed for further analysis.

The goal of screening is to gather information by a less expensive method than sending a highly trained individual to do a comprehensive energy audit. Screening results in requests for further information, leads for energy contractors, and requests for additional energy-auditing services.
CHAPTER 2: EVALUATING INSULATION

Determining insulation levels, and estimating labor and materials for retrofit insulation, are among the energy auditor’s most important tasks. The auditor should also determine how the crew will access the attic, crawl spaces, and other difficult locations, and, if necessary, obtain customer approval for this access.

This chapter focuses on the thermal resistance provided by insulation. It also addresses the construction details of building components which are commonly retrofitted with insulation.

Balloon Framing: Balloon framing is characteristic of some older homes. The wall cavities of balloon-framed houses are often open to both the basement and the attic.

Platform Framing: Modern homes on the other hand feature pre-built roof trusses, platform framing, and 4’ x 8’ sheets of plywood or OSB sheathing material for walls, floors and ceilings.
2.1 **INFRARED SCANNING**

Use an infrared scanner, in conjunction with a blower door when possible, to view the wall from the interior or exterior of the home using the following general recommendations.

Try to scan on very hot or very cold days. The quality of definition and contrast of the view depends on the temperature difference between indoors and outdoors. Well-insulated walls have a sharp definition between the studs and insulated cavities. Uninsulated walls have a poorly defined difference between studs and cavity.

View from indoors when possible because there are fewer solar effects such as warm spots in direct sun. However, viewing from outdoors can be effective at night during cloudy or very cold weather.

Evaluating IR-scanner images from outdoors requires experience with how different weather conditions and solar orientation affects the exterior temperatures of the building.

2.2 **EVALUATING ATTIC OR ROOF INSULATION**

Most attics and roof cavities have access hatches from inside the house. If there is no interior access, remove a roof vent, gable vent, or piece of soffit to look in the attic or roof cavity. If you choose to create a new interior hatch, cut in a closet at least 14 by 20 inches or as conditions permit. Get permission from the customer first.

✔ Try using a digital camera or a borescope held into a hole or cavity to aid your view of the insulation.
Try using an IR scanner to find voids and irregularities in existing insulation.

If access to the attic isn’t possible, estimate the attic insulation based on any information available, for example customer interview and insulation levels in similar building components. Be sure to note in your paperwork that this is an estimate only.

2.2.1 Attic Ventilation

Attic ventilation is intended to remove moisture from the attic during the heating season and/or to remove solar heat from the attic during the cooling season. It is often ineffective, however, and adding attic ventilation during insulation work is seldom necessary.

Many building codes require a minimum ratio of one square foot of net free area to 150 square feet of attic area. With a vapor barrier or with distributed ventilation (high and low), only one square foot per 300 square feet of attic area is required.

Adding attic ventilation won’t cure a moisture problem caused by airborne moisture migrating up from the living space. Instead, preventing moisture from entering the attic is the best way to keep attic insulation dry. Ceilings should be thoroughly air-sealed to prevent moist indoor air from leaking through the ceiling.

Excess attic ventilation can drive ceiling air leakage through the stack effect, which can transport moisture from the house to the attic. Nighttime cooling of the roof deck can also cause water vapor that enters on ventilation air to condense on attic surfaces.
CHAPTER 3: DIAGNOSING SHELL AND DUCT AIR LEAKAGE

This chapter discusses how to diagnose air leakage through the building shell and through ducts. Buildings and their ducts vary widely in air-tightness, making testing and diagnosis an important part of modern energy auditing. Air leakage provides ventilation and combustion air in most homes and this makes diagnosis doubly important to ensure that good indoor air quality and safe combustion are a priority of weatherization and home performance work.

3.1 AIR-LEAKAGE PROBLEMS AND SOLUTIONS

The testing described here will help you analyze the existing air barriers and decide if air sealing is needed.

Ideally, an air barrier and insulation forms the thermal boundary, which completely surrounds a building. Leaks in the air barrier can cause the following deficiencies. Excessive air leakage is one of the typical home’s biggest energy wasters.

- Air leakage can significantly reduce insulation R-value.
- Air leakage moves moisture and other pollutants into and out of the house.
- Air leakage can cause house pressures that can interfere with the venting of combustion appliances.

3.1.1 Driving Forces for Air Leakage

Building height and location, weather, and mechanical equipment all effect air leakage in a building.
Wind

Strong winds may create a positive pressure on one side of a building, and a negative pressure on another side.

Stack Effect

Air moves through a building as if it were a chimney. Depending on the outside temperature, air enters low or high in the building (infiltration) and exits at the top or bottom of the building (exfiltration). This is called the stack effect. The area between the air coming in at the bottom (infiltration) and the air leaving the building at the top (exfiltration) is called the neutral pressure plane.

Not much air leakage comes in or goes out near the neutral pressure plane. As the building is tightened at the bottom, the neutral pressure plane moves up. As the building is tightened at the top the neutral pressure plane moves down. For the best results, specify air-sealing at both the top and bottom of the building.

Duct Leakage Effects

Ideally, airtight return ducts gather air from the home, feed it to the air handler for heating or cooling, and airtight supply ducts supply the same air back to the home. Duct leaks are responsible for the following deficiencies.

- Duct leakage pressurizes the building, resulting in increased shell air leakage whenever the air handler is operating.
• Duct pressures can bring pollutants into the home and interfere with combustion-appliance venting.

• Unbalanced airflow between supply ducts and return ducts can pressurize and depressurize zones within the home. Recommend that operable supply vents be left open, or be replaced with non-operable grilles.

Exhaust Effects of Chimneys and Exhaust Fans

Chimneys and exhaust fans create negative pressure inside a home because they exhaust air from the home.

3.1.2 Safety Considerations for Air Sealing

Most homes depend on air leakage to provide outdoor air for ventilation. When air leakage provides ventilation, we evaluate the minimum ventilation requirement (MVR), which is the minimum amount of blower-door-measured air leakage that provides sufficient ventilation by air leakage. “Evaluating Home Ventilation” on page 251

Air sealing or duct sealing may affect combustion-appliance venting by changing house pressures or reducing the available supply of combustion air. After all weatherization measures have been performed, technicians must conduct worst-case testing of all combustion appliances. See “Worst-Case Testing for Atmospheric Venting Systems” on page 129.

3.1.3 Goals of Air-Leakage Testing

The first goal of air-leakage and pressure testing is to decide how much time and effort is required to achieve cost-effective air-leakage and duct-leakage rates, while safeguarding indoor air quality.

The second goal of leak testing is to decide where to locate the thermal boundary with its air barrier and insulation adjacent to one another. An intermediate zone like an attic or crawl space gives you two choices for completing the thermal boundary. The
CHAPTER 4: EVALUATING HEATING AND COOLING SYSTEMS

This chapter specifies energy efficiency improvements to heating and cooling systems.

The most important visual-inspection tasks are covered in this chapter. All heating systems should also be tested for combustion safety and steady state efficiency (SSE) as part of a comprehensive energy audit. Heating systems should be adjusted, repaired, or replaced, based on inspection and testing.

Cooling systems should be tested during service work for correct airflow and refrigerant charge. Decisions about air conditioning service or system replacement also depend on testing and visual inspection.

Duct leakage should be evaluated for both heating and cooling systems.

The inspection and testing procedures in this chapter may go beyond the auditor’s training and daily practice. The reason they’re included is that installation and service problems are common, and it makes sense for the auditor to be able to specify procedures for HVAC technicians. The better your quality control, the better energy savings, comfort, and customer satisfaction you can deliver. Consider the advanced procedures something to learn about as needed.

4.1 HEATING SYSTEM REPLACEMENT

Here, we discuss replacing furnaces and boilers. Water heaters are also discussed in this first section. Then we examine the fuel issues for both oil and natural gas.
4.1.1 Combustion Furnace Replacement

This section is for the air handlers of combustion furnaces. Successful furnace replacement requires selection of the right furnace and testing to verify that the new furnace is operating correctly.

✔ Make sure that the furnace is sized correctly, using an accurate methodology such as Manual J.
✔ Select a 90+ AFUE furnace and specify its installation as a sealed-combustion (direct vent) unit.
✔ Specify a programmable thermostat, if customers’ schedule and behavior allows.
✔ Verify that all accessible ducts were sealed as part of installation, from the air handler and plenums to the branch connections.

Sealed Combustion Heaters:
Sealed combustion furnaces and boilers prevent the air pollution and house depressurization caused by some open-combustion heating units.
If flue-gas temperature or supply air temperature are unusually high, check static pressure and fuel input. See “Ducted Air Distribution” on page 150.

Filters should be held firmly in place and provide complete coverage of blower intake or return register. Filters should not permit air to bypass the filter when installed in the return plenum. Filters should be easy to replace.

90+ Gas Furnace: A 90+ furnace has a condensing heat exchanger and a stronger draft fan for pulling combustion gases through its more restrictive heat-exchange system and establishing a strong positive draft.

80+ Gas Furnace: An 80+ furnace has a restrictive heat exchanger, a draft fan, and has no draft diverter or standing pilot.

4.1.2 Combustion Boiler Replacement

Boilers are replaced as an energy conservation measure or for health and safety reasons. Boiler seasonal efficiency is more sensitive to proper sizing than is furnace efficiency.
CHAPTER 5: BASELOAD MEASURES

Baseload energy consumption—water heating, refrigeration, lighting, clothes drying, and plug loads—accounts for a large part of the energy use in most homes. In mild climates, baseload consumption may be larger than heating and cooling combined. Water heating, refrigerators, and lighting are discussed in this chapter.

5.1 WATER-HEATING ENERGY SAVINGS

The most important tasks in evaluating hot water energy savings are determining the water heater’s insulation level, measuring the shower’s flow rate, and measuring the hot-water’s temperature.

5.1.1 Determining the Water Heater’s Insulation Level

Common storage water heaters consist of a tank, insulation surrounding the tank, and an outer shell. There is typically either 1 or 2 inches of insulation surrounding the tank. The insulation is either fiberglass, if the water heater was manufactured before 1991, or polyisocyanurate if it was manufactured after 1991.

Follow this procedure to determine the water heater’s insulation level.

✔ Look for a listing of R-value on a label on the water heater.

✔ Find a hole in the outer shell where the flue pipes emerges or where plumbing connects. Look around the hole for either fiberglass or polyisocyanurate insulation.

✔ If the hole isn't large enough, on an electric water heater, try the access panel for the heating element after disconnecting power from the unit.
You may just be able to see the gap between the tank and outer shell. If you can’t see this gap, use a ruler or probe to push through the insulation along side of a pipe connecting to the tank until the probe hits the steel tank to determine thickness. Make sure that the probe is against the tank and not against a nut welded to the tank.

If the existing water heater has less than R-10 insulation, specify a water-heater blanket for the unit.

5.1.2 Water Heater Blankets

Install an insulation blanket on all heaters that are outside the heated space, unless the manufacturer’s label prohibits it. Follow these guidelines to avoid fire hazards and to simplify future service.

Gas Water Heaters

Keep insulation at least 2 inches away from the gas valve and the burner access panel. Do not install insulation below the burner access panel.

Don’t cover the pressure relief valve.

Table 5-1: Insulation R-Values

<table>
<thead>
<tr>
<th>Insulation/thickness</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass 1 inch</td>
<td>3</td>
</tr>
<tr>
<td>Fiberglass 2 inches</td>
<td>6</td>
</tr>
<tr>
<td>Isocyanurate 1 inch</td>
<td>6.5</td>
</tr>
<tr>
<td>Isocyanurate 2 inches</td>
<td>13</td>
</tr>
<tr>
<td>Isocyanurate 3 inches</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Identifying Tank Insulation

Look here: gap around flue

Look here: gap around hot and cold lines
✔ Don’t insulate the tops of gas- or oil-fired water heaters to avoid obstructing the draft diverter.

Electric Water Heaters

✔ Cut the blanket around the thermostat and heating element access plates, or cover the plates and mark their location on the insulation facing.

✔ Don't cover the pressure relief valve.

✔ Cover the top of the water heater with insulation if it doesn’t obstruct the pressure relief valve.

![Diagram of water heater insulation](image)

Water Heater Insulation: Insulation should be installed carefully so it doesn’t interfere with the burner, elements, draft diverter, or pressure relief valve.

5.1.3 Measuring and Adjusting Hot Water Temperature

✔ Measure the water heater’s water temperature at the nearest faucet to the water heater, and reduce the temperature to 120°F with the customer’s permission.
CHAPTER 6: WINDOWS, DOORS, AND EXTERIOR INSULATION

This chapter discusses these topics that relate to energy and repair measures.

- Window shading for low-cost cooling.
- Storm windows.
- Doubling of primary windows.
- Weatherstripping and repair of windows and doors.
- Window replacement.
- Window and door replacement with exterior insulation.

If windows and doors are in poor condition, their repair is often essential for a building’s survival even if it’s not an energy-saving measure. All tasks relating to window and door repair should be accomplished using lead-safe repair methods.

6.1 WINDOW SHADING

Much of the solar energy that strikes a home's windows passes through the glass and enters the living space. This solar heat accounts for up to 40% of summer overheating in many homes. It’s better to block solar heat before it enters the home than to cool the home after the sun overheats it.

Window shading increases comfort and reduces the cost of cooling. Window shading is one of the most cost-effective weatherization measures in hot climates. Not all windows cause overheating, so you should direct your suggestions and specifications towards windows where the most solar heat enters.

- Windows that face east or west
- Windows that face south and have no effective roof overhang.
• Large windows.
• Skylights or other sloping glass.

6.1.1 Exterior Window Shading Treatments

Sun screens, made of mesh fabric, which is stretched over an aluminum frame, are one of the most effective window-shading options. They absorb or reflect a large portion of the solar energy that strikes them, while allowing a view through the window.

Sun screens are installed on the outside of the window, and work well on fixed, double-hung, or sliding windows. For casement and awning windows, the sun screen should be mounted on the movable window sash rather than on the window frame.

Awnings, exterior venetian blinds, and exterior rolling shades and shutters are also very effective but are more expensive than sun screens.

Exterior Shading: Installed on the window’s exterior, these devices absorb or reflect solar heat before it enters the home. This strategy is superior to interior window treatments, which reflect heat back after it has entered.

6.1.2 Interior Window Shading Treatments

Interior shades or curtains are not as effective as exterior shades because they allow solar energy to enter the home. A significant portion of this heat remains inside the home.
Venetian blinds or opaque roller shades with bright white or metallic surfaces facing the exterior can block considerable solar heat.

Avoid translucent or light-admitting shades and blinds because they allow more heat to enter the home. Purchase window shades in the standard sizes that fit most windows since custom-sized shades are considerably more expensive.

Good management of window shades improves their effectiveness. Discuss these principles with the customers.

✔ Close window shades in the morning before the home begins to heat up. Also close the windows.

✔ Open shades in the evening to help cool the home. Also open the windows.

✔ Open south-facing shades all day during winter to allow solar heat to enter the home.

Metalized window films are applied to the inside of existing single- and double-pane windows. Non-metalized window films aren’t appropriate for effective window shading. Highly reflective window films have shading coefficients as low as 0.30.

6.1.3 Landscaping for Shade

Trees and bushes can provide shade for windows, walls, and roofs. They also cool the air around the home with shade and moisture evaporating from their leaves. Well-planned landscaping can reduce an un-shaded home’s air-conditioning costs by up to 50% while adding value to the home and neighborhood.

The best plan for cool landscaping includes tall deciduous trees on the south side of the home to block high mid-day sun. Shorter trees or bushes on the east and west block morning and afternoon sun.

Suggest planting deciduous trees that lose their leaves in the autumn to admit winter sun. Choose types that are quick-growing and easy to care for in your region. Advise customers to
CHAPTER 7: HEALTH AND SAFETY

This chapter introduces some of the most pressing hazards that customers face in their homes. Major hazards and potentially life-threatening conditions should be corrected before installers begin work in the dwelling unless the installers are making the corrections as part of their work. Among the most important pollutants are air pollutants. Source control is the best strategy for reducing indoor air pollution. In airtight homes, whole house ventilation systems are necessary to assure good indoor air quality.

7.1 POLLUTANT SOURCE CONTROL

The control of pollutants such as moisture and volatile organic compounds becomes more important as homes become more airtight.

Controlling pollutants at the source is always the best solution, especially in tighter homes. Mechanical ventilation can help remove and dilute pollutants, but ventilation isn't the first choice for pollutant control.

Auditors should survey the home for pollutants before weatherization or home performance work and to specify the following measures if needed.

✔ Repair roofs and plumbing leaks.
✔ Install a ground-moisture barrier over any bare soil in crawl spaces or basements.
✔ Vent clothes dryers and exhaust fans directly to the outdoors and not to attics or crawl spaces.
✔ Confirm that combustion-appliance vent systems operate properly.
✔ Replace unvented space heaters with vented appliances.
The home’s occupants have control over the introduction and spread of many home pollutants. Educate residents about minimizing pollutants in their homes.

7.1.1 Carbon Monoxide (CO)

The EPA’s suggested maximum 8-hour exposure is 9 ppm in room air. CO at or above 9 ppm is often linked to malfunctioning combustion appliances within the living space, although cigarette smoking or automobile exhaust are also common CO sources.

Causes of Carbon Monoxide

CO is often linked to unvented gas space heaters, kerosene space heaters, backdrafting vented space heaters, gas ranges, leaky wood stoves, and motor vehicles idling in attached garages or near the home. Central furnaces and boilers that backdraft may also lead to high levels of CO.

CO is normally tested near the flame or at the exhaust port of the heat exchanger. CO is usually caused by one of the following:

- ✔ Gas appliances that are overfired for their rated input.
- ✔ Backdrafting of combustion gases smothering the flame.
- ✔ Flame interference by an object (a pan over a gas burner on a range top, for example).
- ✔ Inadequate combustion air.
- ✔ Flame interference by rapidly moving air.
- ✔ Misalignment of the burner.

![Effects of CO](image)

Effects of CO: This graph’s 6 curves represent different exposure levels in parts per million.
✔ Blockage in the flue or heat exchanger.
Appliance service technicians should strive to identify and correct these problems.

Testing for Carbon Monoxide
The most common CO-testing instruments are electronic sensors with a digital readout in parts per million (ppm). Follow the manufacturer’s recommendations on zeroing the meter – usually by exposing the meter to clean air. CO testing equipment usually needs to be re-calibrated every 6 months or so, using factory-specified procedures.

7.1.2 Gas Range and Oven Safety
Test gas ranges and ovens after all other vented appliances have been tested. Range top burners must be tested as measured (in ambient air without adjustment for oxygen content). Follow this procedure.

1. Remove all pots and foil from the burner area.
2. Turn each range top burner on high and allow to warm.
3. Test burner combustion gases 6 inches above the flame.
4. Test the oven with the probe inside the oven vent.

Note: To protect both yourself and the customer, continually monitor ambient space around oven during testing. The ambient air should not exceed 9ppm for any 8-hour period.
CHAPTER 8: EVALUATING MOBILE HOMES

Mobile homes typically use more energy per square foot than site-built homes, but their consistent construction makes them more straightforward to weatherize. Insulation upgrades save the most energy in mobile homes, though sealing shell and duct air leaks are also excellent energy-saving opportunities. Mobile home heating-system replacement are often cost-effective when a customer's energy usage is high.

Typical Components of a Mobile Home: 1–Steel chassis. 2–Steel outriggers and cross members. 3–Underbelly. 4–Fiberglass insulation. 5–Floor joists. 6–Heating/air conditioning duct. 7–Decking. 8–Floor covering. 9–Top plate. 10–Interior paneling. 11–Bottom plate. 12–Fiberglass insulation. 13–Metal siding. 14–Ceiling board. 15–Bowstring trusses. 16–Fiberglass insulation. 17–Vapor barrier. 18–Galvanized steel one-piece roof. 19–Metal windows.
8.1 **Mobile Home General Auditing Tasks**

Explain to the customer that you need access to all areas of the home including bedrooms, bathrooms, and closets.

Ask customers if they notice problems with the furnace, water heater, or any problems in the building shell.

Advise the customer that inspection holes may need to be drilled in inconspicuous locations in their home for auditing and inspection purposes.

Explain the general procedure of the audit and the weatherization process including the blower door test, health and safety tests, and inspection of insulation levels.

8.1.1 Health and Safety

Consider the following important health and safety issues, which are connected to mobile home weatherization.

- ✔ Check the furnace for cracks in the heat exchanger, gas leaks, carbon monoxide, flex connector, and venting.
- ✔ Check the water heater for carbon monoxide, spillage, venting, gas leaks, and adequate combustion air.
- ✔ Open-combustion furnaces and water heaters located in the living space should be replaced because open-combustion appliances are illegal and unsafe for mobile homes. New furnaces and water heaters must be sealed-combustion units, labeled and approved for mobile or manufactured homes.
- ✔ Check gas range and dryer gas line flex connector.
- ✔ Check dryer (gas or electric) for proper venting to outdoors.
- ✔ Look for rot in the rim joist and bottom of the wall.
- ✔ Look for signs that the home may not be level, such as window and door frames not being square.
✔ Check for mold and mildew especially at the bath and kitchen areas.

✔ Check for moisture problems that could degrade weatherization measures, such as plumbing leaks and roof leaks.

See “Health and Safety” on page 239.

8.1.2 Repair Work

Repairs are measures necessary for the effective performance or preservation of weatherization installations. Specify cost-effective repairs to the ceiling, sidewall and belly as necessary to prepare for retrofit insulation. Repairs are necessary to seal large air leaks. Repairs may also be necessary to solve health and safety problems. You may specify the following necessary repairs.

✔ Roof leaks and repairs.

✔ Moisture and drainage repairs.

✔ Ceiling panel repair and or replacement.

✔ Belly repairs.

✔ Plumbing supply leaks. Focus on hot water leaks that also waste fuel.

✔ Repair sewage leaks that present a health hazard.

✔ Ductwork repairs.

✔ Other structural repairs such as repairing rotted floors and walls.

✔ Repairing or replacing windows.

✔ Home re-leveling
APPENDICES

A–1 REQUIRED DIAGNOSTIC EQUIPMENT

Minimum Equipment For Instrumented Air Sealing

✔ Fully instrumented and calibrated blower door, Minneapolis Model 3 or equivalent, capable of measuring CFM$_{50}$ (Cubic feet per minute at 50 Pascals).

✔ DG-3 or DG-700 handheld Digital Manometer, or equivalent.

✔ Smoke generating equipment.

Minimum Equipment for Heating System Analysis

✔ Combustion analyzer.

✔ CO testing capacity.

✔ Draft gauge or manometer.

✔ Heat exchanger leakage testing equipment.

✔ Ammeter (sensitive enough to adjust thermostat anticipators).

✔ Gas leak detector.
A–2 R-Values for Common Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass or rock wool batts and blown 1”</td>
<td>2.8–4.0</td>
</tr>
<tr>
<td>Blown cellulose 1”</td>
<td>3.0–4.0</td>
</tr>
<tr>
<td>Vermiculite loose fill 1”</td>
<td>2.7</td>
</tr>
<tr>
<td>Perlite 1”</td>
<td>2.4</td>
</tr>
<tr>
<td>White expanded polystyrene foam (beadboard) 1”</td>
<td>3.9–4.3</td>
</tr>
<tr>
<td>Polyurethane/polyisocyanurate foam 1”</td>
<td>6.2–7.0</td>
</tr>
<tr>
<td>Extruded polystyrene 1”</td>
<td>5.0</td>
</tr>
<tr>
<td>Sprayed 2-part polyurethane foam 1”</td>
<td>5.8–6.6</td>
</tr>
<tr>
<td>Icynene foam 1”</td>
<td>3.6</td>
</tr>
<tr>
<td>Oriented strand board (OSB) or plywood 1/2”</td>
<td>1.6</td>
</tr>
<tr>
<td>Concrete or stucco 1”</td>
<td>0.1</td>
</tr>
<tr>
<td>Wood 1”</td>
<td>1.0</td>
</tr>
<tr>
<td>Carpet/pad 1/2”</td>
<td>2.0</td>
</tr>
<tr>
<td>Wood siding 3/8–3/4”</td>
<td>0.6–1.0</td>
</tr>
<tr>
<td>Concrete block 8”</td>
<td>1.1</td>
</tr>
<tr>
<td>Asphalt shingles</td>
<td>0.44</td>
</tr>
<tr>
<td>Fired clay bricks 1”</td>
<td>0.1–0.4</td>
</tr>
<tr>
<td>Gypsum or plasterboard 1/2”</td>
<td>0.4</td>
</tr>
<tr>
<td>Single pane glass 1/8”</td>
<td>0.9</td>
</tr>
<tr>
<td>Low-e insulated glass (Varies according to Solar Heat Gain Coefficient (SHGC) rating.)</td>
<td>3.3–4.2</td>
</tr>
<tr>
<td>Triple glazed glass with 2 low-e coatings</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Calculating Attic Loose-Fill Insulation

Loose-fill attic insulation should be installed to a uniform depth to attain proper coverage (bags per square foot) so it attains the desired R-value at the settled thickness. Follow the manufacturer’s labeling in order to achieve the correct density to meet the required R-value. Attic insulation always settles: cellulose settles between 10% to 20% and fiberglass settles between 3% to 10%. For this reason, it’s best to calculate insulation density in square feet per bag rather than installed thickness.
TABLES AND ILLUSTRATIONS

Energy Audits and Customer Relations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Audits</td>
<td>17</td>
</tr>
<tr>
<td>Auditor’s Floor Plans</td>
<td>19</td>
</tr>
<tr>
<td>Visualization</td>
<td>19</td>
</tr>
<tr>
<td>Interior and Exterior Inspection</td>
<td>20</td>
</tr>
<tr>
<td>Seasonal vs. Baseload Domination of Energy Use</td>
<td>25</td>
</tr>
<tr>
<td>Top Six Energy Uses for U.S. Households</td>
<td>27</td>
</tr>
<tr>
<td>Separating Baseload from Seasonal Energy Use</td>
<td>28</td>
</tr>
<tr>
<td>Total Energy Use and the HERS Index</td>
<td>29</td>
</tr>
<tr>
<td>The Summer Peak</td>
<td>31</td>
</tr>
<tr>
<td>Range of Electric Baseload Consumption</td>
<td>32</td>
</tr>
<tr>
<td>Carbon Emissions of Various Fuels</td>
<td>33</td>
</tr>
<tr>
<td>Modern Dryer Dials</td>
<td>43</td>
</tr>
<tr>
<td>Clothes Line</td>
<td>43</td>
</tr>
<tr>
<td>Circulating Fans</td>
<td>45</td>
</tr>
<tr>
<td>Ventilating Fans</td>
<td>45</td>
</tr>
</tbody>
</table>

Evaluating Insulation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balloon Framing</td>
<td>47</td>
</tr>
<tr>
<td>Platform Framing</td>
<td>47</td>
</tr>
<tr>
<td>Infrared Scanner</td>
<td>48</td>
</tr>
<tr>
<td>Low and High Attic Ventilation</td>
<td>49</td>
</tr>
<tr>
<td>Finished Attic</td>
<td>51</td>
</tr>
<tr>
<td>Finished Attic Best Practices</td>
<td>52</td>
</tr>
<tr>
<td>Foam-Insulated Kneewall</td>
<td>52</td>
</tr>
<tr>
<td>Insulating Closed Roof Cavities</td>
<td>53</td>
</tr>
<tr>
<td>Insulating and Sealing Attic Stair Walls, Doors, and Stairs</td>
<td>54</td>
</tr>
<tr>
<td>Insulating and Weatherstripping the Attic Hatch</td>
<td>54</td>
</tr>
<tr>
<td>Stairway Hatch Dam</td>
<td>55</td>
</tr>
</tbody>
</table>
Diagnosing Shell and Duct Air Leakage

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Leakage Concepts</td>
<td>62</td>
</tr>
<tr>
<td>Questions to Ask and Answer Before Air Sealing</td>
<td>64</td>
</tr>
<tr>
<td>Blower Door Components</td>
<td>66</td>
</tr>
<tr>
<td>Blower Door Test</td>
<td>67</td>
</tr>
<tr>
<td>Digital Manometer</td>
<td>67</td>
</tr>
<tr>
<td>Floor-Wall Junction</td>
<td>73</td>
</tr>
<tr>
<td>Finished Attic</td>
<td>74</td>
</tr>
<tr>
<td>Recessed Light Fixtures</td>
<td>74</td>
</tr>
<tr>
<td>Balloon-Framed Gable Wall</td>
<td>75</td>
</tr>
<tr>
<td>Two-Level Attic</td>
<td>75</td>
</tr>
<tr>
<td>Bypasses Under Bathtub</td>
<td>76</td>
</tr>
<tr>
<td>Exterior Walls & Stairs</td>
<td>76</td>
</tr>
<tr>
<td>Cathedral Ceiling with Recessed Light</td>
<td>77</td>
</tr>
<tr>
<td>Porch Air Leakage</td>
<td>77</td>
</tr>
<tr>
<td>Interior Door Test</td>
<td>80</td>
</tr>
<tr>
<td>Bedroom Test</td>
<td>81</td>
</tr>
<tr>
<td>Building Components and Their Air Permeance</td>
<td>82</td>
</tr>
<tr>
<td>Pressure-Testing Building Zones</td>
<td>83</td>
</tr>
<tr>
<td>House-to-Attic Pressure</td>
<td>84</td>
</tr>
<tr>
<td>Attic-to-Outdoors Pressure</td>
<td>84</td>
</tr>
<tr>
<td>Zone Connectedness</td>
<td>85</td>
</tr>
<tr>
<td>Cantilevered Floor Test</td>
<td>85</td>
</tr>
<tr>
<td>Porch Roof Test</td>
<td>85</td>
</tr>
<tr>
<td>Add-a-Hole Test 1</td>
<td>87</td>
</tr>
<tr>
<td>Add-a-Hole Test 2</td>
<td>87</td>
</tr>
<tr>
<td>Add-a-Hole Leakage Factors</td>
<td>88</td>
</tr>
</tbody>
</table>
Open-a-Door Test 1.. 90
Open-a-Door Test 2.. 90
Open-a-Door Leakage Factors 91
Pressure Measurements and Air-Barrier Location 93
House-to-Crawl-Space Pressure 94

Evaluating Heating and Cooling Systems

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealed Combustion Heaters</td>
<td>96</td>
</tr>
<tr>
<td>Static Pressure and Temperature rise</td>
<td>96</td>
</tr>
<tr>
<td>90+ Gas Furnace</td>
<td>97</td>
</tr>
<tr>
<td>80+ Gas Furnace</td>
<td>97</td>
</tr>
<tr>
<td>Radiator Temperature Control</td>
<td>98</td>
</tr>
<tr>
<td>Simple Reverse-Return Hot-Water System</td>
<td>99</td>
</tr>
<tr>
<td>Reset Controller</td>
<td>100</td>
</tr>
<tr>
<td>Oil Heating System</td>
<td>101</td>
</tr>
<tr>
<td>Sealed Combustion Space Heater</td>
<td>102</td>
</tr>
<tr>
<td>Space Heater Controls</td>
<td>102</td>
</tr>
<tr>
<td>Atmospheric, Open-Combustion Gas Burners</td>
<td>104</td>
</tr>
<tr>
<td>70+ Furnace</td>
<td>105</td>
</tr>
<tr>
<td>80+ Furnace</td>
<td>105</td>
</tr>
<tr>
<td>Gas-Furnace Output from Temperature Rise and Airflow (1000s Btuh)</td>
<td>108</td>
</tr>
<tr>
<td>Action Levels for Open-Combustion Gas Appliances</td>
<td>109</td>
</tr>
<tr>
<td>Combustion Standards for Gas Furnaces</td>
<td>110</td>
</tr>
<tr>
<td>Carbon Monoxide Causes and Solutions</td>
<td>111</td>
</tr>
<tr>
<td>Combustion Problems and Possible Solutions</td>
<td>111</td>
</tr>
<tr>
<td>Primary Air Adjustment</td>
<td>112</td>
</tr>
<tr>
<td>Input in Thousands of Btu/hr for 1000 Btu/cu. ft. Gas</td>
<td>114</td>
</tr>
<tr>
<td>Clocking the Meter</td>
<td>115</td>
</tr>
<tr>
<td>Measuring Draft</td>
<td>117</td>
</tr>
</tbody>
</table>
Airflow and Climate ... 153
Fan Curves ... 154
Furnace Operating Parameters 156
Adjustable Drive Pulley .. 157
A Fan/Limit Control ... 157
Pressure in Two Measurement Systems 158
Duct Blower Mounted to Air Handler 159
Static Pressure Probe .. 159
Duct Blower Mounted to Main Return 160
True Flow® Meter ... 163
Measuring Return Air with a Flow Hood 164
Visualizing TESP ... 165
Total external static pressure (TESP) 167
Total External Static Pressure Versus System Airflow for a Particular System 167
Depressurized Central Zone 168
Pressurized Bedrooms .. 168
Furnace Filter Location .. 169
Restricted Return Air ... 171
Finding Duct Air Leaks .. 172
A Pressure Pan .. 173
Pressure-Pan Test .. 175
Problem Return Register 175
Dominant Return Leaks 176
Dominant Supply Leaks 176
Duct Leakage Standards 177
Total Duct Air Leakage Standards for Homes 178
Testing Ducts Before Air-Handler Installation 178
Total Duct Air Leakage Measured by the Duct Blower 180
Measuring Duct Leakage to Outdoors 181
Panned Floor Joists .. 183
Flexduct Joints .. 184
Plenums, Poorly Sealed to Air Handler 184
Sectioned Elbows .. 184
Duct Insulation .. 185
Cast-Iron Sectional Boilers 186
Expansion Tank, Air Separator, and Vent 189
Zone Valves .. 189
Purging Air ... 190
One-Pipe and Two-Pipe Steam Systems 191
Two-Pipe Steam Systems 191
Steam Traps .. 193
Inside a Programmable Thermostat 194
Electric Baseboard .. 196
Electric Furnace .. 196
Is Strip Heat Activated? 197
Heat Pump .. 198
Compiled Research Results on HVAC Performance 201
Air-Conditioner Sizing 203
Charge-Checking ... 204

Baseload Measures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation R-Values</td>
<td>206</td>
</tr>
<tr>
<td>Water Heater Insulation</td>
<td>207</td>
</tr>
<tr>
<td>Setting Hot-Water Temperature</td>
<td>208</td>
</tr>
<tr>
<td>Water-Saving Shower Heads</td>
<td>209</td>
</tr>
<tr>
<td>Measuring Shower Flow Rate</td>
<td>210</td>
</tr>
<tr>
<td>Standard Gas Water Heater</td>
<td>211</td>
</tr>
<tr>
<td>Fan-Assisted Water Heater</td>
<td>212</td>
</tr>
<tr>
<td>Sealed-Combustion Water Heater</td>
<td>212</td>
</tr>
<tr>
<td>Sealed-Combustion Tankless Water Heater</td>
<td>214</td>
</tr>
<tr>
<td>Obsolete Tankless Water Heater</td>
<td>214</td>
</tr>
<tr>
<td>Closed Loop Antifreeze System</td>
<td>216</td>
</tr>
<tr>
<td>Drainback System</td>
<td>216</td>
</tr>
<tr>
<td>Recording Watthour Meter</td>
<td>218</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Refrigerator Consumption Example</td>
<td>219</td>
</tr>
<tr>
<td>Compact Fluorescent Lamps</td>
<td>221</td>
</tr>
</tbody>
</table>

Windows, Doors, and Exterior Insulation

- Exterior Shading | 224
- Trees for Shade | 226
- Exterior Sliding Storm Windows | 226
- Clip-on Storm Window | 226
- Doubling Windows | 227
- Weatherstripping Double-Hung Windows | 229
- Weatherstripping Doors | 230
- Minor Door Repair | 230
- Threshold and Door Bottom | 230
- NFRC label | 232
- Replacement Window and Sill Angle | 233
- Flashing a Flanged Window | 234
- Safety Glass Around Doors | 236
- Windows Near Walking Surfaces | 236
- Fire Egress Windows | 236
- Exterior Foam Insulation | 237

Health and Safety

- Effects of CO | 240
- CO from Range and Oven | 241
- Advanced 4-Speed Range Fan | 242
- Moisture Sources | 245
- Moisture Sources and Their Potential Contributions | 246
- Dust Mites | 247
- Well Sealed Crawl Spaces | 248
- Knob-and-Tube Wiring | 250
Finding the N-Value ... 254
Fan Sizes for Homes with Average Air Leakage 255
Multi-Port Exhaust Ventilation 257
Specifying Exhaust Fans 258
Fan Capacity, Maximum Noise Rating, & Efficacy 259
Supply Ventilation .. 259
Centralized Balanced Ventilation 260
Heat-Recovery Ventilator 261

Evaluating Mobile Homes
Typical Components of a Mobile Home................ 263
Bowstring Roof Details 266
Wall/Roof Details on Newer Homes 266
Bowstring Roof Cavity 266
Standard Mobile Home Construction 269
Older Mobile Home Construction 269
Checking Walls ... 270
Mobile Home Ducts ... 271
Floor Return Air ... 272
Air-Leak Locations and Typical CFM₅₀ Reductions 275
Glass Interior Storms ... 276
Plastic Storms ... 276
Mobile-Home Double Window 277
Mobile-Home Double Door 278
Mobile-Home Door .. 278

Appendices
Typical Table from Insulation Bag 282
Insulation Coverage Table 282
Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add-a-hole test</td>
<td>85-86</td>
</tr>
<tr>
<td>Air barriers</td>
<td></td>
</tr>
<tr>
<td>add-a-hole test</td>
<td>85-86</td>
</tr>
<tr>
<td>air permeance of</td>
<td>82</td>
</tr>
<tr>
<td>definition</td>
<td>79</td>
</tr>
<tr>
<td>primary vs. secondary</td>
<td>79</td>
</tr>
<tr>
<td>testing for leaks</td>
<td>77-86</td>
</tr>
<tr>
<td>testing with manometers</td>
<td>82-86</td>
</tr>
<tr>
<td>Air conditioners</td>
<td></td>
</tr>
<tr>
<td>inspections</td>
<td>201-203</td>
</tr>
<tr>
<td>sizing</td>
<td>203</td>
</tr>
<tr>
<td>Air conditioning</td>
<td></td>
</tr>
<tr>
<td>reducing costs of refrigerant charge</td>
<td>43-44</td>
</tr>
<tr>
<td>measuring</td>
<td>151-164</td>
</tr>
<tr>
<td>studies</td>
<td>151</td>
</tr>
<tr>
<td>testing for unbalanced</td>
<td>167-168</td>
</tr>
<tr>
<td>troubleshooting</td>
<td>164-168</td>
</tr>
<tr>
<td>Air-to-air heat exchangers</td>
<td>260-261</td>
</tr>
<tr>
<td>Alarms</td>
<td></td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>243</td>
</tr>
<tr>
<td>smoke</td>
<td>242</td>
</tr>
<tr>
<td>American Gas Association</td>
<td></td>
</tr>
<tr>
<td>venting categories</td>
<td>144</td>
</tr>
<tr>
<td>Annual Fuel Utilization Efficiency (AFUE)</td>
<td>144</td>
</tr>
<tr>
<td>Appliances</td>
<td></td>
</tr>
<tr>
<td>energy measures</td>
<td>205-209</td>
</tr>
<tr>
<td>Asphalt felt</td>
<td>232</td>
</tr>
<tr>
<td>Attics</td>
<td></td>
</tr>
<tr>
<td>hatches</td>
<td>77</td>
</tr>
<tr>
<td>insulation</td>
<td>48-53</td>
</tr>
<tr>
<td>ventilation</td>
<td>49-50</td>
</tr>
<tr>
<td>Automatic fill valve</td>
<td>190</td>
</tr>
<tr>
<td>Awnings</td>
<td>224</td>
</tr>
<tr>
<td>Air filters</td>
<td></td>
</tr>
<tr>
<td>oil burner</td>
<td>123</td>
</tr>
<tr>
<td>Air handlers</td>
<td></td>
</tr>
<tr>
<td>See also Blowers</td>
<td></td>
</tr>
<tr>
<td>sealing holes in</td>
<td>96</td>
</tr>
<tr>
<td>Air leakage</td>
<td></td>
</tr>
<tr>
<td>concepts</td>
<td>62</td>
</tr>
<tr>
<td>effect</td>
<td>62</td>
</tr>
<tr>
<td>goals of testing</td>
<td>63-64</td>
</tr>
<tr>
<td>mobile homes</td>
<td>274-275</td>
</tr>
<tr>
<td>of materials, rates</td>
<td>82</td>
</tr>
<tr>
<td>sealing</td>
<td>73-77</td>
</tr>
<tr>
<td>when to test</td>
<td>66</td>
</tr>
<tr>
<td>Air permeance of building materials</td>
<td>82</td>
</tr>
<tr>
<td>Air quality. See Indoor air quality</td>
<td></td>
</tr>
<tr>
<td>Air sealing</td>
<td>73-77</td>
</tr>
<tr>
<td>Air separator</td>
<td>189</td>
</tr>
<tr>
<td>Air shutters, oil</td>
<td>122</td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
</tr>
<tr>
<td>and climate</td>
<td>153</td>
</tr>
<tr>
<td>blower speed</td>
<td>153</td>
</tr>
<tr>
<td>dry & wet climates</td>
<td>153</td>
</tr>
<tr>
<td>improving low</td>
<td>169</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backdrafting</td>
<td>126-130</td>
</tr>
<tr>
<td>Barometric dampers</td>
<td>119</td>
</tr>
<tr>
<td>Baseload</td>
<td></td>
</tr>
<tr>
<td>analysis example</td>
<td>28</td>
</tr>
<tr>
<td>measures</td>
<td>205-210</td>
</tr>
<tr>
<td>Basements</td>
<td></td>
</tr>
<tr>
<td>thermal boundary</td>
<td>59-60, 94</td>
</tr>
<tr>
<td>Blinds</td>
<td></td>
</tr>
<tr>
<td>exterior</td>
<td>224</td>
</tr>
<tr>
<td>Venetian</td>
<td>224</td>
</tr>
<tr>
<td>Blower doors</td>
<td></td>
</tr>
<tr>
<td>airtightness limits</td>
<td>253-256</td>
</tr>
<tr>
<td>components/description</td>
<td>66-68</td>
</tr>
<tr>
<td>preparing for tests</td>
<td>68-69</td>
</tr>
<tr>
<td>pressure diagnostics</td>
<td>77-86</td>
</tr>
<tr>
<td>simple zone testing</td>
<td>80-81</td>
</tr>
<tr>
<td>Topic</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>test procedures</td>
<td>70</td>
</tr>
<tr>
<td>testing</td>
<td>66-79</td>
</tr>
<tr>
<td>testing air barriers</td>
<td>82-86</td>
</tr>
<tr>
<td>Blowers</td>
<td></td>
</tr>
<tr>
<td>controls</td>
<td>155</td>
</tr>
<tr>
<td>Boilers</td>
<td></td>
</tr>
<tr>
<td>corrosion</td>
<td>186</td>
</tr>
<tr>
<td>efficiency</td>
<td>189-190</td>
</tr>
<tr>
<td>low-limit control</td>
<td>189</td>
</tr>
<tr>
<td>maintaining</td>
<td>42</td>
</tr>
<tr>
<td>maintenance/efficiency</td>
<td>186-187</td>
</tr>
<tr>
<td>sizing</td>
<td>97</td>
</tr>
<tr>
<td>Building tightness limit.</td>
<td></td>
</tr>
<tr>
<td>Building tightness limits</td>
<td>252, 253,</td>
</tr>
<tr>
<td></td>
<td>253-256</td>
</tr>
<tr>
<td>Burners</td>
<td></td>
</tr>
<tr>
<td>gas, servicing</td>
<td>127-128</td>
</tr>
<tr>
<td>nozzle for oil</td>
<td>122</td>
</tr>
<tr>
<td>oil</td>
<td>118-123</td>
</tr>
<tr>
<td>Bypasses</td>
<td>73-77</td>
</tr>
<tr>
<td>Cad cell</td>
<td>121</td>
</tr>
<tr>
<td>Carbon emissions</td>
<td></td>
</tr>
<tr>
<td>per unit of energy</td>
<td>33</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>240</td>
</tr>
<tr>
<td>alarms</td>
<td>243</td>
</tr>
<tr>
<td>causes of</td>
<td>240</td>
</tr>
<tr>
<td>causes/solutions</td>
<td>111</td>
</tr>
<tr>
<td>exposure limits</td>
<td>241</td>
</tr>
<tr>
<td>standard for oil</td>
<td>110, 120</td>
</tr>
<tr>
<td>testing</td>
<td>129, 241</td>
</tr>
<tr>
<td>CAZ</td>
<td>148</td>
</tr>
<tr>
<td>CFL. See Compact fluorescent lamps</td>
<td></td>
</tr>
<tr>
<td>CFM50</td>
<td>66</td>
</tr>
<tr>
<td>Charge</td>
<td></td>
</tr>
<tr>
<td>refrigerant</td>
<td>204</td>
</tr>
<tr>
<td>Chimney liners</td>
<td></td>
</tr>
<tr>
<td>insulating</td>
<td>143</td>
</tr>
<tr>
<td>sizing</td>
<td>143</td>
</tr>
<tr>
<td>Chimneys</td>
<td>139-142</td>
</tr>
<tr>
<td>all-fuel</td>
<td>141</td>
</tr>
<tr>
<td>clearances</td>
<td>140</td>
</tr>
<tr>
<td>house-pressure effect</td>
<td>63</td>
</tr>
<tr>
<td>masonry specifications</td>
<td>139</td>
</tr>
<tr>
<td>measures to improve draft</td>
<td>134</td>
</tr>
<tr>
<td>retrofit liners</td>
<td>142, 145</td>
</tr>
<tr>
<td>termination</td>
<td>141</td>
</tr>
<tr>
<td>types</td>
<td>139</td>
</tr>
<tr>
<td>when to reline</td>
<td>144</td>
</tr>
<tr>
<td>Client relations</td>
<td>264</td>
</tr>
<tr>
<td>Clothes dryers</td>
<td></td>
</tr>
<tr>
<td>efficient use</td>
<td>43</td>
</tr>
<tr>
<td>Clotheslines</td>
<td>43</td>
</tr>
<tr>
<td>CO. See Carbon monoxide</td>
<td></td>
</tr>
<tr>
<td>Coils</td>
<td></td>
</tr>
<tr>
<td>cleaning</td>
<td>201</td>
</tr>
<tr>
<td>Combustion</td>
<td></td>
</tr>
<tr>
<td>oil standards</td>
<td>109, 120</td>
</tr>
<tr>
<td>problems/solutions</td>
<td>111</td>
</tr>
<tr>
<td>testing/analysis</td>
<td>105-123</td>
</tr>
<tr>
<td>the chemical process</td>
<td>104</td>
</tr>
<tr>
<td>Combustion air</td>
<td>146-149</td>
</tr>
<tr>
<td>cfm requirements</td>
<td>130, 146</td>
</tr>
<tr>
<td>confined spaces</td>
<td>147-148</td>
</tr>
<tr>
<td>methods of providing</td>
<td>146</td>
</tr>
<tr>
<td>unconfined spaces</td>
<td>147</td>
</tr>
<tr>
<td>Combustion losses</td>
<td>189</td>
</tr>
<tr>
<td>excess air</td>
<td></td>
</tr>
<tr>
<td>Combustion testing</td>
<td></td>
</tr>
<tr>
<td>drilling holes</td>
<td>110</td>
</tr>
<tr>
<td>Combustion zone</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>130, 146</td>
</tr>
<tr>
<td>Comfort</td>
<td></td>
</tr>
<tr>
<td>staying cool</td>
<td>43-44</td>
</tr>
<tr>
<td>Compact fluorescent lamps</td>
<td>220-221</td>
</tr>
<tr>
<td>Concrete vapor-proofing</td>
<td>249</td>
</tr>
<tr>
<td>Condenser coils</td>
<td></td>
</tr>
<tr>
<td>cleaning</td>
<td>201</td>
</tr>
<tr>
<td>Conditioned space</td>
<td></td>
</tr>
<tr>
<td>definition of</td>
<td>57</td>
</tr>
<tr>
<td>versus unconditioned</td>
<td>58</td>
</tr>
</tbody>
</table>
Consumption of energy 24
Contracts 34
Conectors fin-tube 190
Cooling energy saving tips with fans 43 44
Corrosion 186
Costs measure selection seasonal/baseload 25 26
Crawl spaces thermal boundary 59-60, 94
Customer education 40-44
Customer relations 15-38

D

Dampers balancing 155
Diagnostics airflow building shell equipment for house pressure 176-177 pressure-pan testing 173-175 unbalanced airflow 167-168 Doors bottoms and sweeps mobile home repair repairing replacement mobile homes weatherstrip 228-229
Draft and duct improvements measuring, illus. over-fire 120 strength & types of 129-130 Duct blower leak-testing measuring airflow 178-181 158-161

Ductboard deteriorating facing 183
Duct-induced house pressure 176-177
Ducts design airflow duct-airtightness testing evaluating leakage finding leaks hangers house-pressure effect improvements to solve draft problems leakage standards measuring airflow mobile homes pressure-pan testing sealing boots and registers sealing chases sealing leaks sizing static pressure troubleshooting leakage 176-177 158-164 178 173-175 181-183 151-152 164-166 172-183

Dust lead 249

E-F

Education customer 40-44
Efflorescence 247
Electric heat baseboard furnaces 194-200 195-196 196
Electrical safety 250
Energy baseload measures consumption 205-210 24
Energy audit ethics, bias health and safety 37 22
interior/exterior inspection 18-20
mechanical inspection 20-21

Saturn Energy Auditor Field Guide 301
Energy auditor responsibilities 15-38
Energy audits ethics, bias 37
Energy factor water heating 212
Energy recovery ventilators 260-261
Energy use analysis 24-28
analysis, example 28
Ethics 15-38
Excess air oil burners 120
Exfiltration See also Air leakage concepts 62
Expansion tanks 188, 189
Fan curves 154
Fans for cooling 43
Filters air, installation 97
changing 41
Flex duct joints 182
Flow hood 163
Flue dampers. See vent dampers
Flue-gas analysis 119
Fluorescent lamps compact 220
Furnaces 150-185
installation 96-97
mobile homes 270
operating parameters 156
replacement 96-97
sealing holes in 96
temperature rise 155

G

Gas burners
clocking gas meter 113
operation of 104

Gores 182
Grilles cleaning 41
Ground moisture barrier 60, 249

H

Health and safety inspection 22
mobile homes 264-265
Heat pumps efficiency 197-198
room 199-200
testing 198
Heat recovery ventilators 260-261
Heating systems electric 194-200
electric baseboard 195-196
electric furnaces 196
forced-air 150-185
heat pumps 197-198
hot-water 186
hydronic 97-100, 187-190
oil-fired 118-123
replacement 100
room heat pumps 199-200
steam 190-193
High limit hot-water heating 188
steam 192
House pressures limits 168
measuring 67
problems with 63
reducing 134
unbalanced airflow 167-168
HRVs. See Heat recovery ventilators
<table>
<thead>
<tr>
<th>Hydronic heating systems</th>
<th>187-190</th>
</tr>
</thead>
</table>

IAQ. See indoor air quality

Indoor air pollution
- controlling 239-241

Indoor air quality
- 240-241, 253-256

Infiltration
- concepts 62

Inspections
- air conditioners 201-203
- final 35
- health and safety 22
- in-progress 35
- interior/exterior 18-20
- mechanical systems 20-21
- wall insulation 55

Insulation
- accessing walls 55
- attic 48-53
- coverage, mobile home
 - exterior 266-269
 - floor, mobile home 267-268
 - hydronic pipe 99
 - mobile home 266-269
 - roof, mobile home 266-267
 - steam piping 190, 193
- wall, mobile home
 - water heaters 205-207

Intermediate zones
- definition 58

J-M

Kneewalls 74

Landscaping
- for shade 225

Laundry
- energy savings in 43

Lead paint 249

Lead-safe weatherization 249

Leakage area 72

Lighting 220-221
- recessed 76

Line-voltage thermostats 195

Low-flow shower head 209

Low-limit 99

Manometer 160, 162, 163
- digital 67

Manometers
- digital 130
- hose connections 67

Mesh tape 182

Metering
- refrigerators 217-219

Mildew 247

Minimum ventilation level 65

Mobile homes 263-278
- air leakage 274-275
- auditing 264
- belly insulation 267-268
- construction/components 263
- door replacement 278
- ducts 270-274
- furnaces 270
- health and safety 264-265
- insulation 266-269
- insulation coverage 266-269
- repairs 265
- roof insulation 266-267
- storm windows 276
- wall insulation 269
- water heaters 275-276
- windows 276-277
- windows/doors 276-278

Moisture
- and health 246
- barriers, ground
 - sources 244-246
Mold 247

N-O

National Fire Protection Association 126
Natural gas 115
heat content 113
leak testing 113
Neutral pressure plane 62
NFPA. See National Fire Protection Association
Oil burners 118-123
air filter 123
excess air 120
ignition 119
maintenance/adjustment 122-123
nozzles 122
performance indicators 110, 120
Oil filters 123
Oil pressure 110, 120
Outdoor thermostat 199
Over-fire draft 120

P-Q

Paint 247
failure 247
lead 249
Pipe insulation 190, 193
DHW 208-209
Plumbing penetrations sealing around 75
Pollution controlling sources 239-241
Porch roof testing air leakage through 85
Power venters 145
Pressure 67
measuring differences in 173-175
pan testing 173-175
pascals/IWC conversion 158
See also House pressures
WRT notation 67
zone leak-testing 82-84
Pressure boundary 173-175
See also Air barrier, Insulation
Pressure pan testing 173-175
Pressure tank 98
and pump 98
Pressure-relief valve 98, 188
Primary air adjustment 112
Programmable thermostats 195
Propane finding leaks 128
Pumps 98
hydronic, installation 98
Quality assurance 36
Quality control 36

R-S

Radiators 190
Recessed lights 74
Refrigerant charge 204
Refrigerators evaluation and replacement 216-219
metering 217-219
Registers opening 41
Repair doors 228-229
windows 228
Repairs mobile homes 265
Reset controllers 190
Rough opening 234
R-values determining 47-55
Safety electrical 250
Shade trees 225
Siding
 replacement 237
Sizing
 air conditioners 203
Smoke alarms 242
Smoke number 120
Soffits
 kitchen 74
Solar heat-gain coefficient 232
Stack effect 62
Static pressure 164-166
Steady-state efficiency 110, 120
testing for 119
Steam heating 190-193
Steam traps 191, 193
Stick pins 185
Storm windows 226
Subcooling 204
Sun screens 224
Superheat 204
Superheat test 200-201
Supply ventilation 259

T-V

Tape
 holding power 183
Temperature rise
 furnace 110, 155
The Energy Conservatory 161
Thermal boundary
 See also Air barrier
 basements and crawl spaces 59-60, 94
definition 57
 ideal location 93
Thermal bypasses
 locations of 73-77
 sealing 73-77
Thermal resistance
 calculating 47-55
 of insulation materials 280
Thermostats
 cooling settings 44
 heating settings 41
 line voltage 195
 outdoor 199
 programmable 195
two-stage 199
Torchiere 220-221
TrueFlow® 161
Tyvek 232
U-factors
 determining 47-55
 window 232
Unconditioned spaces
 definition of 57
Utility bills
 analysis, example 28
Vapor-proofing
 concrete 249
Venetian blinds 224
Vent connectors 136-138
clearances 139
materials 136
specifications 137
Vent damper 190, 191
Ventilation
 attic 49-50
 balanced 259-260
determining need for
 exhaust 257-258
 supply 259
 systems 257-261
 whole house 257-261
Venting
 See also Ventilation
 AGA categories 144
 atmospheric 126-143
 fan-assisted 144
W-Z

Water heaters
 draining sediment 43
 efficient use 43